
Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

n Corr
E-m

Pleas
http:
journal homepage: www.elsevier.com/locate/neucom
Learning a blind quality evaluation engine of screen content images

Ke Gu a,n, Guangtao Zhai b, Weisi Lin a, Xiaokang Yang b, Wenjun Zhang b

a School of Computer Engineering, Nanyang Technological University, Singapore
b Shanghai Key Laboratory of Digital Media Processing and Transmissions, Institute of Image Communication & Information Processing, Shanghai Jiao Tong
University, China
a r t i c l e i n f o

Article history:
Received 22 August 2015
Received in revised form
17 October 2015
Accepted 1 November 2015

Keywords:
Screen content images (SCIs)
Image quality assessment (IQA)
Blind/no-reference (NR)
Statistical model
Machine learning
x.doi.org/10.1016/j.neucom.2015.11.101
12/& 2016 Published by Elsevier B.V.

esponding author. Tel.: þ86 13764402720
ail addresses: guke.doctor@gmail.com, gukesjt

e cite this article as: K. Gu, et al., Le
//dx.doi.org/10.1016/j.neucom.2015.1
a b s t r a c t

We in this paper investigate how to blindly predict the visual quality of a screen content image (SCI).
With the popularity of multi-client and remote-controlling systems, SCIs and the relevant applications
have been a hot research topic. In general, SCIs contain texts or graphics in cartoons, ebooks or captures
of computer screens. As for blind quality assessment (QA) of natural scene images (NSIs), it has been well
established since NSIs possess certain statistical properties. SCIs however do not have reliable statistic
models so far and thus the associated blind QA task is hard to be addressed. Aiming at solving this
problem, we first extract 13 perceptual-inspired features with the free energy based brain theory and
structural degradation model. In order to avoid the overfitting and guarantee the independence of
training and testing samples, we then collect 100,000 images and use their objective quality scores
computed via a high-accuracy full-reference QA method for SCIs as labels, before learning a new blind
quality measure from aforementioned 13 features to the objective quality score. Experimental results
performed on a large-scale screen image quality assessment database (SIQAD) demonstrate that the
proposed blind quality metric has a good correlation with human perception of quality, even superior to
state-of-the-art full-, reduced- and no-reference QA algorithms.

& 2016 Published by Elsevier B.V.
1. Introduction

Screen content images (SCIs), a mixture of graphics, texts and
natural scene images, typically include ebooks, emaps, cartoons
and captures of computer screens. As the multi-client collabora-
tion and communication systems, such as remote computing [1],
cloud gaming [2] and cloud-guided enhancement [3], are
increasingly widespread, SCIs have recently aroused broad inter-
ests from multimedia and image processing communities. During
the process of acquisition, compression and transmission, SCIs are
inevitably degraded by various distortions. For instance, contrast
altered SCIs are produced for different settings of screen lumi-
nance and contrast. Compressed SCIs will generate blockiness and
quantization. Noise often appears when SCIs are transmitted.
Hence we in this paper propose an objective quality metric for the
degradation measurement of SCIs.

Objective image quality assessment (IQA) can be divided into
three types: full reference (FR), reduced reference (RR) and no
reference (NR). With the known reference image, FR-IQA models
compute the distance between the reference and distorted images.
The variation in image structures is a good distance metric, and on
uee@gmail.com (K. Gu).
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this basis, some modern FR-IQA models have been devised in [4–
12]. Nonetheless, these methods do not perform nicely for the
quality evaluation of SCIs. Therefore we have recently proposed an
effective structure-induced quality metric (SIQM) [13], which
combines the structural similarity measurement with the struc-
tural degradation model. Using the new large-scale screen image
quality assessment database (SIQAD) [14,15], the SIQM metric was
shown to outperform state-of-the-art FR-IQA methods.

Using partial reference image or some extracted features, RR-
IQA models work with various kinds of strategies. For example,
using the advanced multi-resolution analysis tool - wavelet-based
contourlet transform (WBCT) – for valid feature extraction, Gao
et al. proposed the WBCT-based RR (RR-WBCT) metric [16]. The
free energy based distortion metric (FEDM) [17] was devised to
simulate the working of the brain's perception to image quality for
RR scenarios. Taking the low-level vision into account, Narwaria
et al. developed the Fourier transform based quality measure
(FTQM) [18] based on the phase and magnitude of the Fourier
transform. By largely reducing the amount of reference informa-
tion used in SSIM, the structural degradation model (SDM) [19]
succeeded in converting SSIM into the effective RR-IQA technique
with only few features.

In most cases the (complete or partial) reference image is not
available, and thus NR-IQA models become the only choice which
has been intensively studied during the past few years. One type of
ation engine of screen content images, Neurocomputing (2016),
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Table 1
Definitions of the 12 structural degradation features for interior and exterior parts
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classical blind IQA metrics is to predict the visual quality of specific
distortion types, e.g. blockiness [20,21], image sharpness/blurri-
ness [22–24], and multiple distortions [25]. Another type of pop-
ular and mature strategy for the exploration of NR-IQA performs
by extracting natural scene statistics (NSS) based features to be
mapped to the visual quality score with machine learning. In [26],
Moorthy et al. have found that the subband coefficients after dis-
crete wavelet transform (DWT) can be well-fitted using a gen-
eralized Gaussian distribution (GGD), and thus developed a two-
stage system by distortion classification before quality prediction.
In [27], Saad et al. observed that the coefficients after discrete
cosine transform (DCT) have better regulations, and without
identifying distortion types, they can directly predict the visual
quality from local DCT coefficients. In [28], Mittal et al. discovered
the NSS in the spatial domain, and thereby proposed an effective
and efficient blind quality metric that is usually considered to be
the benchmark in existing researches of NR-IQA methods.

As compared to the opinion-aware (OA) NR-IQA metrics stated
above, there has been recently a trend towards constructing
opinion-unaware (OU) blind IQA techniques without using human
scored images. In [29], natural image quality evaluator (NIQE) was
explored, without any prior knowledge of image contents or dis-
tortion categories, by quantifying the deviation between the
model statistics of the distorted image and those extracted from a
collection of pristine natural images. To make the NIQE more
complete, Zhang et al. in [30] recently came up with the
integrated-local NIQE (IL-NIQE) with three new statistical features
(i.e. gradient statistics, statistics of Log-Gabor filter responses and
statistics of colors) included.

Yet the NSS model is violated when the images do not come
from a natural source, such as computer graphics and document
images, or when natural images are corrupted [31], making the
aforementioned NR-IQA models work not validly for SCIs. In our
recent work, a new statistical model was built on natural scene
images, which derives a high-accuracy blind quality metric [32]. It
is surprising that the statistical regulation approximately exists in
lossless screen content images. Hence we in this paper propose a
novel blind quality measure for SCIs (BQMS), by first extracting
features based on a new screen content statistics model before
learning the module from the feature space to the quality score
using a large set of training data.

Compared with the previous works, the main contributions of
this paper are summarized as follows: (1) to the best of our
knowledge, this work is the first one blindly evaluating the quality
of SCIs; (2) we construct the first screen content statistics (SCS)
model; (3) in contrast to previous works that only use a few
hundreds of training samples, a vast number of 100,000 training
data are applied for building our BQMS method, in order to avoid
the overfitting in the learning; (4) the proposed blind quality
metric outperforms state-of-the-art FR-, RR- and NR-IQA approa-
ches using the new SIQAD database dedicated to SCIs [14,15].

The remainder of this paper are arranged as follows: Section 2
presents the statistic model of screen content images before con-
structs our blind IQA method. In Section 3, thorough experiments
are conducted using the large-scale SIQAD database to verify the
effectiveness of our BQMS with recently developed IQA metrics.
We conclude this paper in Section 4.
and three pairs of (U,V).

Definitions of structural
degradation features

Interior parts Exterior parts

Sμ Sσ Sμ Sσ

ðU;VÞ ¼ ð1;1Þ Si1μ Si1σ Se1μ Se1σ
ðU;VÞ ¼ ð3;3Þ Si3μ Si3σ Se3μ Se3σ
ðU;VÞ ¼ ð5;5Þ Si5μ Si5σ Se5μ Se5σ
2. Methodology

2.1. Screen content statistics

We establish the SCS model using two sets of features of free
energy measure and structural degradation information. The free
energy theory, from the perspective of human action, perception
Please cite this article as: K. Gu, et al., Learning a blind quality evalu
http://dx.doi.org/10.1016/j.neucom.2015.11.101i
and learning, explains and unifies most existing brain principles
[33]. Its core concept lies in that, in the brain, the so-called internal
generative model controls the cognitive process, with a con-
structive way to predict meaningful parts and abandon uncertain
residuals from an input visual signal. This residual “gap” always
exists and it has been found to be highly related to the image
quality [17].

To specify, the autoregressive (AR) model, due to its good
descriptive ability [34,35], is used to predict meaningful parts of an
input image x, defined as follows:

xn ¼X cðxnÞpþqn ð1Þ
where n is the pixel index. X cðxnÞ is a vector of the c nearest pixel
indices of xn. p¼ ðp1;…; pcÞT is a vector of AR model coefficients.
The superscript “T” indicates transpose. qn is the error term. To
solve p, we need to rewrite the linear system to be the matrix
form:

p̂ ¼ arg min
p

Jx�X pJ2 ð2Þ

where x¼ ðx1;…; xcÞT ; Xðt; :Þ ¼X cðxtÞ. We use the least squares
method to find the solution to be p̂ ¼ ðXTXÞ�1XTX. In real appli-
cation, an 8-th order AR model is trained in a local 7�7 neigh-
borhood before the pseudo-inverse of the 48�8 matrix are solved
via Gaussian eliminations. The predicted x̂ can be estimated as

x̂n ¼X cðxnÞp̂: ð3Þ
Then, following the analysis in [17], the free energy of the image x
can be approximated as the entropy of residual “gap”:

FeðxÞ ¼ �
X
i

PiðxÞ log PiðxÞ ð4Þ

where x ¼ x� x̂ being the prediction error between the input
image and its predicted one; PiðxÞ is the probability density of
grayscale i in x .

Structural degradation model derives from the observation
that, after the low-pass filtering, images corrupted by various
distortion types and intensities will appear as distinct degrees of
spatial frequency reduction. For example, with the same low-pass
filter, noisy images in general have higher degrees of frequency
decrement than blurred images. As thus, we define the structural
degradation information by

SμðxÞ ¼ E
σð _μx €μx Þ þϵ
σð _μx Þσð €μxÞ þϵ

 !
ð5Þ

SσðxÞ ¼ E
σð _σ x €σ x Þ þϵ
σð _σ x Þσð €σ x Þ þϵ

� �
ð6Þ

where _μx and _σ x represent the local mean and variance of x, com-
puted by a normalized Gaussian kernel w¼ fwðu; vÞju¼ �U;…; U; v
¼ �V ;…;Vg with the standard deviation of 1.5; €μx and €σx are simi-
larly defined using the impulse function instead of the Gaussian ker-
nel; Eð�Þ is to compute the global average; σðABÞ indicates the local
covariance between A and B; ϵ is a small positive constant to avoid
division-by-zero.
ation engine of screen content images, Neurocomputing (2016),
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Fig. 1. Representative 37 screen content (“webpage” and “screen snap”) images downloaded from the website of “Google Images”.
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Further, we modify the structural degradation information
with three considerations. First, we choose three couples of (U,V)
as ð1;1Þ, ð3;3Þ and ð5;5Þ in the kernels, to introduce different
Please cite this article as: K. Gu, et al., Learning a blind quality evalu
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amounts of neighboring information. Second, SμðxÞ and SσðxÞ are
reversed when FeðxÞ is bigger than T, making the structural
degradation information of images, which are corrupted by
ation engine of screen content images, Neurocomputing (2016),
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Fig. 2. Scatter plots of the structural degradation features SτμðxÞ and Sτσ ðxÞ ðτ¼ fi1; i3 ; i5 ; e1 ; e3 ; e5gÞ versus the free energy feature FeðxÞ on 1000 original (high-quality) screen
content images. The straight lines are fitted with the least square method. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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various distortion types such as blur and noise, have consistent
changes with the visual quality. Third, SμðxÞ and Sσ ðxÞ are com-
puted in the interior 6�6 part and exterior block-edge part, to
Please cite this article as: K. Gu, et al., Learning a blind quality evalu
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discriminate different frequency decrease in interior and exterior
areas caused by JPEG compression. Table 1 presents all the 12
structural degradation features.
ation engine of screen content images, Neurocomputing (2016),
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In order to validate the effectiveness of the screen content
statistics, we have first downloaded thousands of “webpage” and
“screen snap” images from the “Google Images”website, then used
human eyes to observe the overall images one by one, and finally
picked up 1000 high-quality images. Those chosen images are of
size from 500�221 to 4218�1265, part of which are exhibited in
Fig. 1. It deserves to emphasize that there is not a bit overlapping
between the chosen 1000 high-quality images and the original
images in the testing SIQAD database. We then compare the
structural degradation features Sτμðx0Þ and Sτσðx0Þ, where x0 means
the original SCI and τ¼ fi1; i3; i5; e1; e3; e5g, with the free energy
feature Feðx0Þ on the selected 1000 original screen content images
and draw the 12 scatter plots in Fig. 2. As shown, the linear
dependence of the free energy feature and structural degradation
features provides an opportunity to characterize distorted SCIs
without original references. We fit the linear regression model:

Feðx0Þ ¼ aτ � Sτμðx0Þþbτ ð7Þ

Feðx0Þ ¼ cτ � Sτσðx0Þþdτ ð8Þ

where τ¼ fi1; i3; i5; e1; e3; e5g; the parameters aτ , bτ , cτ and dτ are
obtained using the least square method, whose values are repor-
ted in Table 2.
Table 2
The estimates of model parameters aτ , bτ , cτ and dτ for Sτμ and Sτσ ðτ¼ fi1 ; i3; i5 ; e1 ;
e3 ; e5gÞ using the least square method.

Variables aτ bτ cτ dτ

Si1μ �15.690 16.281 Si1σ �8.7722 9.3716

Si3μ �6.3634 6.7923 Si3σ �16.115 17.153

Si5μ �15.358 15.872 Si5σ �6.5959 7.0473

Se1μ �15.630 16.229 Se1σ �8.6480 9.2890

Se3μ �6.3552 6.7896 Se3σ �15.873 16.934

Se5μ �15.353 15.869 Se5σ �6.5785 7.0370

Table 3
Summarization of the used thirteen features. Fs indicates the features of structural
degradation information including Sτμ and Sτσ .

Feature ID Feature notation Feature description

f01 Fe Free energy entropy based on AR model
f 02� f 07 Nτ

μ and Nτ
σ , τ¼ fi1; i3 ; i5g Difference of Fs and Fe in interior parts

f 08� f 13 Nτ
μ and Nτ

σ , τ¼ fe1 ; e3 ; e5g Difference of Fs and Fe in exterior parts

Fig. 3. The primary framework of the blind BQMS method

Please cite this article as: K. Gu, et al., Learning a blind quality evalu
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2.2. Image quality evaluation

Based on the linear relationship of the free energy feature and the
structural degradation features on original SCIs, we further define Nτ

μ
ðxÞ ¼ FeðxÞ�ðaτ � SτμðxÞþbτÞ and Nτ

σðxÞ ¼ FeðxÞ�ðcτ � SτσðxÞþdτÞ, since
Nτ
μ and Nτ

σ are close to zero for high-quality images (i.e. without
distortions or with very few distortions), while they will be far from
zero when distortions appear and become larger. In addition, we also
consider the free energy feature which has a good correlation with
human ratings on noisy and blurred images [17]. Lastly, thirteen fea-
tures used in our BQMS metric are summarized in Table 3.

The reason for selecting the adopted 13 features might be
explained from the following two perspectives. The first one is
that, for high-quality screen content images, there exist high cor-
relations between structural degradation information and free
energy feature, as given in Fig. 2, since the Gaussian convolution
kernel used in the computation of structural degradation infor-
mation is a uniform low-pass filter, and conversely, the AR model
well preserves image textures but is not good at processing image
edges. The second perspective is that, e.g. for white noise, the AR
model is generally of the better denoising ability than the Gaus-
sian filter, which gives rise to the deviations from the fitted red
lines shown in Fig. 2. Based on these two considerations, we have a
reason to believe the extracted features can be learned to infer the
visual quality scores close to the real subjective opinions.

After the feature extraction, it needs to learn a regression module
from features to the image quality score. In order to avoid the pro-
blem of overfitting, this paper adopts a total of 100,000 images as
training samples. To specify, we apply the aforesaid 1000 high-
quality SCIs as original references, which are exactly content-
independent of the pristine images used in the testing SIQAD data-
base. We then simulated the distorted SCIs via six typical distortion
types, i.e. Gaussian noise (GN), Gaussian blur (GB), motion blur (MB),
contrast change (CC), and JPEG and JPEG2000 (JP2K) compressions.
Note that these six distortion types are also included in the SIQAD
database. For each image, we create its distorted ones of each type on
more than 15 distortion levels with Matlab embedded functions. We
finally generate a training dataset consisting of 100,000 distorted
screen content images.

But how to label these distorted SCIs? In [36], the authors,
instead of training on human opinion scores, used synthetic scores
yielded from FR-IQA approaches as training labels. Likewise, in this
paper we apply the recently designed SIQM [13], which improves
the SSIM weighted by the structural degradation measurement
[19]. The SIQM method was proven to work validly for the screen
content IQA, and thus the associated quality scores of distorted
SCIs are used for approximating subjective ratings.
based on statistical model of screen content images.
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Fig. 4. Scatter plots of the structural degradation features SτμðxÞ and Sτσ ðxÞ ðτ¼ fi1 ; i3 ; i5; e1 ; e3; e5gÞ versus the free energy feature FeðxÞ on 20 original screen content images in
the SIQAD database. The red lines are based on model parameters in Table 2. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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Having prepared the training set, we use the support vector
regression (SVR) [37] to learn the module in the proposed BQMS.
In reality, the SVR-based machine learning technology has pene-
trated into various kinds of research fields, such as used for image
Please cite this article as: K. Gu, et al., Learning a blind quality evalu
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retrieval [38] and quality evaluation [39]. Given a training dataset
D¼ fðx1; y1Þ;…; ðxr ; yrÞg, where xi and yi are respectively a feature
vector of f 01� f 13 in Table 3 and the target output of the SIQM
score derived from the i-th training image. Let parameters α40
ation engine of screen content images, Neurocomputing (2016),
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and ε40, the standard form of SVR can be expressed as:

min
w;δ;v;v0

1
2
wTwþα

Xr
i ¼ 1

viþ
Xr
i ¼ 1

v0i

 !

s:t: wTϕðxiÞþδ�yirεþvi;

yi�wTϕðxiÞ�δrεþv0i;
vi; v0iZ0; i¼ 1;…; r:

where Kðxi; xjÞ ¼ϕðxiÞTϕðxjÞ is the kernel function, which is
assigned as the Radial Basis Function (RBF) kernel having
Kðxi; xjÞ ¼ expð�kJxi�xj J2Þ. The parameters α, ε and k are to be
determined using the training samples.

Finally, we illustrate the primary framework of the proposed
blind BQMS technique in Fig. 3, in order to help readers readily
understand how to apply the metric to predict the visual quality of
a distorted screen content image.
Table 4
Performance indices of our BQMS and two NR-IQA algorithms on the SIQAD
database. We highlight the best performed metric with boldface.

80–20% Type PLC SRC KRC

DIIVINE [26] NR 0.6912 0.6587 0.4805
BLIINDS-II [27] NR 0.7255 0.6813 0.5020
BRISQUE [28] NR 0.7708 0.7237 0.5382
NFERM [32] NR 0.8007 0.7717 0.5815
BQMS (Proposed) NR 0.8115 0.8005 0.6056

60–40% Type PLC SRC KRC
DIIVINE [26] NR 0.6338 0.6131 0.4440
BLIINDS-II [27] NR 0.6666 0.6468 0.4719
BRISQUE [28] NR 0.7525 0.7115 0.5259
NFERM [32] NR 0.7670 0.7369 0.5458
BQMS (Proposed) NR 0.8023 0.7892 0.5924

40–60% Type PLC SRC KRC
DIIVINE [26] NR 0.5768 0.5644 0.4035
BLIINDS-II [27] NR 0.6414 0.6243 0.4511
BRISQUE [28] NR 0.7297 0.6915 0.5058
NFERM [32] NR 0.7278 0.7027 0.5130
BQMS (Proposed) NR 0.7904 0.7759 0.5782

20–80% Type PLC SRC KRC
DIIVINE [26] NR 0.4910 0.4854 0.3410
BLIINDS-II [27] NR 0.5471 0.5405 0.3825
BRISQUE [28] NR 0.6814 0.6495 0.4685
NFERM [32] NR 0.6667 0.6459 0.4657
BQMS (Proposed) NR 0.7558 0.7366 0.5406

Table 5
Performance indices of our BQMS and FR- and RR-IQA models on the SIQAD
database. We emphasize the top two quality metrics with boldface.

Algorithms Type PLC SRC KRC RMS

FSIM [6] FR 0.5746 0.5652 0.4092 11.612
GSI [7] FR 0.5515 0.5311 0.3894 11.835
IGM [9] FR 0.6287 0.6245 0.4594 11.033
VSI [10] FR 0.5403 0.5199 0.3712 11.938
SIQM [13] FR 0.8522 0.8455 0.6529 7.4222
FEDM [17] RR 0.6670 0.5930 0.4097 10.571
QFTB [18] RR 0.5798 0.5430 0.4165 11.559
SDM [19] RR 0.5947 0.5891 0.4221 11.406
NIQE [29] NR 0.3749 0.3568 0.2462 13.152
IL-NIQE [30] NR 0.1497 0.0994 0.0706 14.027
BQMS (Proposed) NR 0.7549 0.7223 0.5299 9.3042
3. Experimental results

3.1. Evaluation metrics, databases and protocols

Using the newly released SIQAD database [14,15], the perfor-
mance of our BQMS model is computed and compared with state-
of-the-art IQA techniques, consisting of: (1) FR FSIM [6], GSI [7],
IGM [9], VSI [10] and SIQM [13]; (2) RR FEDM [17], QFTB [18] and
SDM [19]; (3) NR DIIVINE [26], BLIINDS-II [27], BRISQUE [28], NIQE
[29], IL-NIQE [30] and NFERM [32]. The SIQAD database was
constructed dedicated to the screen content IQA, which is made up
of 980 distorted SCIs created by using seven distortion types at
seven degradation levels to corrupt 20 pristine SCIs. Apart from
the aforementioned six types of distortions (i.e. GN, GB, MB, CC,
JPEG and JP2K), the SIQAD database also includes the Layer Seg-
mentation based Coding (LSC).

As the video quality experts group (VQEG) suggested, we first
remove the nonlinearity of objective quality predictions through a
five-parameter nonlinear regression function [40]:

vc ¼ β1
1
2
� 1
1þeβ2ðvo �β3Þ

� �
þβ4voþβ5 ð9Þ

where vo, vc and vs respectively stand for the vectors of original
IQA scores, converted IQA scores after the regression of Eq. (9) and
subjective MOS values; model parameters β1;…;β5 are decided
during the curve fitting process. After the regression, we calculate
four important performance indices, Spearman rank order corre-
lation coefficient (SRC), Kendall's rank-order correlation coefficient
(KRC), Pearson linear correlation coefficient (PLC), and root mean-
squared error (RMS) to testify and compare the proposed BQMS
with other testing IQA metrics on the SIQAD database. The former
two evaluations are used for prediction monotonicity, the third
one for prediction accuracy, and the last one for prediction con-
sistency. A value close to one for PLC, SRC and KRC while close to
zero for RMS indicates the superior correlation performance in line
with subjective human ratings. Interested readers can refer to [40]
for a more detailed description of these measures.

3.2. Validation of screen content statistics model

Additionally, we also check the robustness of the proposed
screen content statistic model and justify the model parameters
shown in Table 2. The overall 20 original screen content images
contained in the SIQAD database were chosen for testing, since they
are extremely different from the 1000 high-quality “webpage” and
“screen snap” images downloaded from the “Google Images” web-
site. As illustrated in Fig. 4, we present the scatter plots and the
fitted lines using the model parameters listed in Table 2. One can
Please cite this article as: K. Gu, et al., Learning a blind quality evalu
http://dx.doi.org/10.1016/j.neucom.2015.11.101i
see that the used statistic model can also be applied to the new 20
screen content images with a small deviation.

3.3. Performance measures and comparisons

We adopt two manners in performance evaluations. The first
evaluation is to compare our BQMS model and OA-NR-IQA algo-
rithms (including DIIVINE, BLIINDS-II, BRISQUE and NFERM), coming
from the typical training process. Based on the image scene, we
randomly divide all the 980 SCIs in the SIQAD database into two
groups, one of which covers 784 distorted SCIs associated to 16 ori-
ginal SCIs (i.e. 80% data for training) and the other of which covers
196 distorted SCIs associated to the rest 4 original SCIs (i.e. 20% data
for testing). We repeat the aforesaid random 80% train–20% test
procedure 1000 times and report the median result across the 1000
iterations, to confirm that the testing method is robust across image
scenes and not biased by some specific train-test splits. Table 4 lists
the results of our BQMS approach and blind DIIVINE, BLIINDS-II,
BRISQUE and NFERM metrics. As expected, the proposed BQMS
model always obtains the highest scores across all.
ation engine of screen content images, Neurocomputing (2016),
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Apart from the 80% train–20% test procedure, other train-test
procedures with 60–40%, 40–60%, 20–80% are used to validate and
compare BQMS with other four NR-IQA models, as reported in
Table 4. Likewise, our BQMS algorithm has constantly achieved the
optimal results. And moreover, one can easily see that, with the
training data decreased and testing data increased, the perfor-
mance of our model is slightly fluctuated whereas other four blind
metrics show a large degree of performance reductions. The above
phenomena might be explained by the fact that the NSS which
two testing blind IQA metrics rely on does not come into existence
Fig. 5. Statistical significance comparison of the proposed blind BQMS algorithm
and other testing IQA methods using the F-test.

Fig. 6. Scatter plots of DMOS versus lately developed FR VSI, FR SIQM, NR NIQE and our
logistic function and the (black) dash lines are 95% confidence intervals. (For interpretati
version of this paper.)

Please cite this article as: K. Gu, et al., Learning a blind quality evalu
http://dx.doi.org/10.1016/j.neucom.2015.11.101i
in original screen content images, but conversely, our BQMS metric
is established on a good screen content statistics model.

The second manner is to measure correlation performance of
our BQMS and FR-, RR- and OU-NR-IQA models (including NIQE
and IL-NIQE). As mentioned previously, rather than training on
only hundreds of images, we utilize a large set of 100,000 dis-
torted SCIs and the corresponding SIQM scores as training samples
to learn a module for our (opinion-unaware) BQMS method, which
is subsequently used for comparing with FR-, RR- and OU-NR-IQA
techniques. From Table 5, we can easily find that the proposed
BQMS algorithm, despite the use of SIQM scores (instead of human
opinions) as training labels, has obtained very encouraging per-
formance results, noticeably better than OU-NR NIQE and IL-NIQE
models. Due to the presence of the (complete or partial) original
references for assistance in the FR- and RR-IQA techniques, they
are considered hardly matchable with NR-IQA metrics. Despite
this, our BQMS model is still superior to most state-of-the-art FR-
and RR-IQA algorithms as well as just inferior to the SIQM method
which was recently proposed and specific to the IQA of screen
content images.

The statistical significance comparison is further conducted by
comparing the prediction errors between vc (converted scores)
and vs (subjective scores) of each IQA model tested. Supposing
that the prediction errors of each metric conform to the Gaussian
distribution, we compute the F-test on the errors of our BQMS
technique and other IQA methods. A value of “1” indicates that the
metric in the row is significantly superior to the one in the column
with a confidence greater than 95%, a value of “0” indicates that
the metric in the row is significantly comparable to the one in the
blind BQMS metric on the SIQAD database. The (red) lines are curves fitted with the
on of the references to color in this figure caption, the reader is referred to the web

ation engine of screen content images, Neurocomputing (2016),
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column, and a value of “�1” indicates that the metric in the row is
statistically inferior to the one in the column. We list the results of
statistical significance in Fig. 5. It can be viewed that the high
performance has been obtained by our blind IQA metric, whose
results are “1” in most conditions. Specifically, except the SIQM
metric dedicated to the IQA of screen content, our blind algorithm
is completely statistically better than the FR-, RR- and NR-IQA
metrics tested in this work.

At last, we straightforwardly compare the correlation perfor-
mance in light of visualized scatter plots. As shown in Fig. 6, we
display the scatter plots of subjective DMOS values and objective
quality predictions of state-of-the-art FR VSI, FR SIQM, NR NIQE and
our blind BQMS technique. Obviously, our method has acquired the
impressive convergency and monotonicity, much better than
recently designed VSI and NIQE metrics while slightly inferior to the
FR SIQM metric that is specific to the screen content IQA.

The quality assessment of screen content images is still in a
preliminary stage, and there is some room for performance gain of
the blind IQA model. The first suggestion about the future work is
to improve the proposed screen content statistics model, e.g. to
make the statistic model more robust across different contents and
thus to reduce the deviations given in Fig. 4. And the second one is
to devise higher-accuracy FR-IQA metrics for screen content, with
whose scores as training labels to learn a more reliable blind
quality method.
4. Conclusion

In this paper we have put forward a new blind quality metric
for screen content images. Based on the new screen content sta-
tistics model, we have proposed 13 features and proven their
effectiveness on the SIQAD database. In order to avoid the over-
fitting in training, we have used a large set of 100,000 SCIs and the
associated SIQM scores to construct the BQMS technique. With
respect to state-of-the-art RR- and FR-IQA methods, our BQMS
algorithm has acquired better correlation performance in line with
subjective quality scores. In the future, two plans will be carried
out. One is to improve the screen content statistics model and the
other is to employ more reliable training samples by advancing FR
quality metrics of screen content images. Our source code will be
available soon at http://www.ntu.edu.sg/home/wslin/Publications.
htm and https://sites.google.com/site/guke198701/publications.
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